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1 Introduction
In these notes, we cover an algorithm design technique called recursion, or informally, “divide-
and-conquer.” To motivate this technique, consider how we typically analyze the correctness of a
complicated algorithm with many subroutines, say with the following pseudocode format.

Algorithm 1: ComplexAlgo(inputs)
1 SimpleAlgo1(. . .)
2 SimpleAlgo2(. . .)
3 . . .

Many algorithms follow the template of Algorithm 1, an example of a reduction, which is a common
tool in algorithm design. The main idea of a reduction is to break a complicated task into simpler
tasks which are hopefully easier to solve. We can establish correctness of an algorithm following
this template by first showing that the reduction is correct, i.e., that the algorithm really does
perform the intended task, assuming that all subroutines are implemented correctly. To complete
the proof, we then need to prove that each subroutine similarly correctly matches its specification.

Recursion is perhaps the simplest variant of this template. The idea in recursion is to reduce an al-
gorithm to copies of itself, but with smaller inputs. For example, the MergeSort algorithm (recalled
in Algorithm 5, Section 6.1) reduces the problem of sorting a list to sorting two smaller lists, along
with some straightforward additional work. The general strategy of recursion greatly simplifies
both proofs of correctness and runtime analyses (we postpone discussion of this latter point to
Section 3). A recursive algorithm has the following form, for some constants 0 < c1, c2, . . . < 1.

Algorithm 2: RecursiveAlgo(input of size n)

1 RecursiveAlgo(input of size c1n)
2 RecursiveAlgo(input of size c2n)
3 . . .

Regarding correctness, the analysis of a recursive algorithm is essentially a textbook proof by strong
induction (see Section 2, Part I). Let S(n) denote the statement that an algorithm completes its
intended task on all inputs of size n. Then, assuming the reduction is correct, to prove S(n), it
suffices to establish S(c1n), S(c2n), and so on. This is exactly what strong induction accomplishes!
In other words, assuming base cases are correctly implemented, we get correctness of all subroutines
“for free” in a recursive algorithm, letting us focus on the reduction itself. The phenomenon of
being able to assume correctness of recursive calls is called the “recursion fairy” by [Eri24].

As we will see, recursion is a surprisingly powerful algorithmic tool in a variety of important
problem settings. At a high level, one should be on the lookout for situations where solving the
given problem on a subset of the input makes progress towards the overall goal (e.g., sorting the
first half of a list clearly helps in sorting the whole list, in a quantifiable way).

We provide several examples of recursion in algorithm design throughout these notes; our primary
goal is to illustrate situations where such self-reductions are helpful.
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2 Multiplication
As a first introduction, we consider recursive solutions to one of the most basic computational
tasks: multiplying two n-digit numbers, say in base 10. For analyzing solutions to this task, we
treat the runtime of 1-digit addition, subtraction, and multiplication as O(1).1

You may wonder, why multiplication rather than addition? It turns out that from a computational
perspective, multiplication is more challenging. Specifically, let a and b be n-digit numbers, and
consider the complexity of addition using the “grade-school algorithm” for computing a + b, i.e.,
repeatedly summing digits (possibly with carry-overs). There are at most n+1 digits of the output
we need to compute, each of which involves adding at most three one-digit numbers (one each from
a and b, and potentially a carry-over). Therefore, we can add two n-digit numbers in O(n) time.
A similar argument shows that subtracting two n-digit numbers also takes O(n) time.

Multiplication is a different story. Consider the “grade-school algorithm” for multiplication, e.g.,

1 2 3 4 5
5 4 3 2 1
1 2 3 4 5

2 4 6 9 0
3 7 0 3 5

4 9 3 8 0
6 1 7 2 5
6 7 0 5 9 2 7 4 5

×

(1)

when a = 12345, b = 54321, n = 5. As we can see, each of the n intermediate sums in this
algorithm requires O(n) time (as each digit involves a multiplication and possibly an addition with
a carry-over). This gives an overall O(n2) runtime, significantly more expensive than addition.

Taking our earlier advice, it seems like multiplication is a good opportunity for recursive algorithm
design, as computing products of parts of the inputs clearly helps achieve our final goal; indeed,
the grade-school algorithm computes n partial products. Can we do better using recursion?

A basic idea is to divide our inputs a and b into smaller portions, e.g., the decompositions

a = 10
n
2 a1 + a0, b = 10

n
2 b1 + b0

split each input into its n2 most and least significant digits.2 Then, we can compute a×b recursively:

a× b = 10n (a1 × b1) + 10
n
2 (a1 × b0 + a0 × b1) + a0 × b0. (2)

We can then subdivide a0, a1, b0, and b1 further, until we are at the base case of single-digit
multiplication. Letting T (n) denote the time to multiply two n-digit numbers, let us understand
the complexity of the recursive algorithm which repeatedly uses the formula (2). To compute the
product of two n-digit numbers, we first need to multiply two n

2 -digit numbers four times. We
then need to perform a constant number of shifts (appending zeroes to the ends of numbers) and
additions, all of which take O(n) time. Hence, we have

T (n) = 4T
(n

2

)
+O(n). (3)

As we will see in Section 3, solving the recursion (3) yields T (n) = O(n2). It seems from this
exercise that, while our recursive solution helped formalize the grade-school algorithm’s correctness,
it did not substantially improve its runtime. In fact, the famous mathematician and computer
scientist Andrey Kolmogorov once conjectured that this algorithm was optimal, and organized a
seminar to prove that subquadratic runtimes for multiplication are impossible.

Amazingly, within a week, a student named Anatoly Karatsuba disproved this conjecture [KO62].
Karatsuba’s improvement was also recursive, but more clever than that suggested by (2). Indeed,
Karatsuba noticed that just three n

2 -digit multiplications suffice to multiply n-digit numbers:

a× b = 10n (a1 × b1) + 10
n
2 ((a1 + a0)× (b1 + b0)− a1 × b1 − a0 × b0) + a0 × b0. (4)

1That is, in this section specifically, we will explicitly be tracking the number of 1-digit arithmetic operations we
perform, rather than working in the word RAM model discussed in Section 7, Part I.

2If n is odd, we can treat its first digit as 0 and set n← n+1, which does not affect any of our asymptotics in n.
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Observe that (2) and (4) work out to the same expression, since (a1 + a0)× (b1 + b0) = (a1 × b1 +
a0 × b0) + (a1 × b0 + a0 × b1). However, in Karatsuba’s recursion (4), we are able to reuse the fact
that we have already computed a1×b1 and a0×b0 to evaluate this middle expression. Karatsuba’s
recursion does require more additions, and leads to the overall formula

T (n) = 3T
(n

2

)
+O(n). (5)

This is because again, all of the operations required to carry out the formula (4), beyond performing
the three smaller multiplications a0 × b0, a1 × b1, and (a1 + a0)× (b1 + b0), are simple digit shifts,
additions, or subtractions, all of which take O(n) time. We show in the following Section 3 that
the recursion (5) yields an improved runtime of T (n) = O(nlog2(3)) ≈ O(n1.58).

The lesson from this anecdote is that even for simple strategies such as recursion, there can be
significant ingenuity involved in designing algorithms which are as efficient as possible. In fact, we
will shortly see an even faster multiplication algorithm in Section 5.2. More generally, many of
the problems we will encounter have multiple routes towards recursively subdividing inputs into
smaller subproblems, and aggregating partial computations into an overall solution. While these
more clever recursions may seem like magic at first, the best way to get better at spotting them is
hands-on experience with many examples, which we aim to provide via this course.

3 Recurrences
Expressions such as (3), (5) are very common when analyzing runtimes of recursive algorithms. This
should be unsurprising: in general, the cost of a recursive algorithm is the cost of its subroutines
(which are calls to the algorithm itself, on smaller inputs), plus additional costs for aggregate the
subroutine solutions. In this section, we give tools for analyzing such expressions.

One of the most generic tools we will rely on repeatedly is commonly known as the master theorem.

Theorem 1 (Master theorem). Let T , f : N→ R>0 be increasing functions, satisfying the recursion

T (n) = aT
(n
b

)
+ f(n), (6)

where a > 0 and b > 1. Let τ := logb(a). Then the following hold.

• Case 1: Leaves-heavy. If f(n) = O(nτ−ε) for a constant ε > 0, then T (n) = Θ(nτ ).

• Case 2: Balanced. If f(n) = Θ(nτ logk(n)) for k ≥ 0, then T (n) = Θ(nτ logk+1(n)).

• Case 3: Root-heavy. If f(n) = Ω(nτ+ε) for a constant ε > 0, then T (n) = Ω(nτ+ε). If
further, aT

(
n
b

)
≤ cf(n) for a constant c < 1 and all sufficiently large n, then T (n) =

Θ(f(n)). In particular, this applies if f(n) = Θ(nτ+ε logk(n)) for ε > 0, k ≥ 0.

Theorem 1 is useful in a wide range of situations. For example, it implies that the solutions to the
recursions (3) and (5) are respectively T (n) = Θ(n2), and T (n) = Θ(nlog2(3)), as claimed earlier
(these are both leaves-heavy). However, not all recurrences you will run into “in the wild” have
the form (6) exactly, so it is good to know how to prove Theorem 1 so we can generalize it.

To understand Theorem 1, we need a basic fact about geometric sequences. Let a0, a1, . . . , ak > 0
be a geometric sequence with common ratio r > 0, i.e., ai = a0 · ri for all i ∈ [k]. We proved in
Lemma 5, Part I, that for any r 6= 1, the sum of this sequence has the formula:

a0 + . . .+ ak = a0

k∑
i=0

ri = a0 ·
rk+1 − 1

r − 1
. (7)

If the ratio r < 1 is a constant, then rk+1−1
r−1 = 1−rk+1

1−r ∈ [1, 1
1−r ] is also a constant, so a0 + . . .+ak =

Θ(a0), i.e., it is dominated by its first term. This corresponds to the “root-heavy” case.

If the ratio r > 1 is a constant, then we claim a0 + . . . + ak = Θ(a0 · rk) = Θ(ak). A simple way
to see this is to reverse the geometric sequence, so it has first term ak and ratio 1

r < 1, and we can
then apply the previous argument. This corresponds to the “leaves-heavy” case.
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If the ratio r = 1 exactly, then we can no longer use the formula (7), but it is simple to check
a0 + . . .+ ak = (k + 1)a0, as all the terms are the same. This corresponds to the “balanced” case.
In this setting, k ≤ dlogb(n)e = O(log(n)) is the number of layers before nodes are constant sized.

Let us first consider the recursion (5) as an example, to build intuition for Theorem 1. We make a
simplifying assumption for now, to be discussed later: that T and f extend over the domain R>0

(as defined, they take integers as arguments, but n
b may not be in N). Then, (5) reads:

T (n) = O(n) + 3T
(n

2

)
= O

(
n+

3n

2

)
+ 9T

(n
4

)
= O

(
n+

3n

2
+

9n

4
+ . . .+

(
3

2

)log2(n)

n

)
+O

(
3log2(n)

)
= O

(
3log2(n)

)
= O

(
nlog2(3)

)
.

(8)

The third line above can be viewed as an example of a recursion tree. Each node of the tree
corresponds to a different application of (5). Each size-n node has a base cost of O(n), and spawns
three children of half the size. After log2(n) such spawns, each node has size 1. At this point,
we can use T (1) = O(1) to bound their costs. There are ( 3

2 )log2(n)n = 3log2(n) nodes on this last
layer, which dominates the leaves-heavy geometric sum with common ratio r = 3

2 > 1. To see that
3log2(n) = nlog2(3), we can take logarithms of each side, both giving log(3) log(n)

log(2) .

The basic idea to prove Theorem 1 in general is to create a geometric sequence governing the
recurrence. If f(n) = O(nc), for example, the ratio of the geometric sequence corresponding to (6)
is r = a( 1

b )c. To see why, the base cost of a node with size n in (6) is f(n) = O(nc). It further
spawns a nodes in the next layer with size n

b , each incurring an extra cost of O((nb )c). For example,
in (8), the top layer costs O(n), and then the second layer costs O(3 · (n2 )1), and so on. Thus, when
f(n) = O(nc), we expect the cost of the recursion tree to behave like

O
(
nc + a

(n
b

)c
+ a2

( n
b2

)c
+ . . .+ adlogb(n)e

)
= O(nc) ·

(
1 + r + r2 + . . .+ rdlogb(n)e

)
,

where r := a

(
1

b

)c
.

(9)

Notice that a( 1
b )c = 1 precisely when c = logb(a), explaining the threshold τ = logb(a) in Theo-

rem 1. Indeed, by plugging (9) into (7) with a0 = O(nc), the three claimed cases follow.

We now provide some missing details. A full proof can be found in [CLRS22], Section 4.6.

For the leaves-heavy and balanced cases, we have essentially provided a full proof. To formalize
our argument, we simply need to declare a formal inductive hypothesis (the “induction fairy”) and
add explicit constants everywhere in the proof. The leaves-heavy case is bottlenecked by the fact
that there are many leaves (alogb(n) = nτ of them, up to a constant), all of which cost Θ(1).

In the balanced case, every recursion level has roughly the same cost, and there are O(log(n)) levels.
This argument turns out to generalize just fine to near-polynomials of the form Θ(nτ logk(n)), as
stated in the theorem. Intuitively, each time we halve n, what happens to the logarithmic term is
dominated completely by what happens to the polynomial term, due to, e.g., Lemma 11, Part I.

In the root-heavy case, if we are willing to settle for a crude lower bound of the form Ω(nc) for
c = τ + ε, then our earlier proof is essentially complete. However, we should not expect the
geometric sequence to proceed as in (9) if f is not a polynomial. It turns out that there are
pathological f which grow slower than a polynomial but do not satisfy the additional condition in
Theorem 1 (see Exercise 4.5-5, [CLRS22]). In such situations, we cannot obtain the tight estimate
of Θ(f(n)). Fortunately, all near-polynomials Θ(nc logk(n)), by far the most common runtimes in
practice, are not pathological and we can directly apply Theorem 1 in these cases.

Floors and ceilings. Actual algorithms are of course run on inputs with integer-valued sizes, so
recurrences in practice do not technically look like, e.g., (3), (5), or (6). For example, consider (5):
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if n is odd, we cannot split the input exactly in two. A more accurate recursion would be:

T (n) = 3T
(⌈n

2

⌉)
+O(n). (10)

Here we used the fact that every subproblem involves two numbers of size either dn2 e or b
n
2 c ≤ d

n
2 e.

This seems very unwieldy, but it turns out that these little rounding errors do not matter and
Theorem 1 is still true as stated, even if all of the n

b -sized subproblems in (6) are replaced with
dnb e or b

n
b c-sized subproblems appropriately, instead. For the rest of course, we will not penalize

you for any such rounding-related issues when dealing with recurrence relations such as (6).

We briefly sketch how to handle this issue, following Section 1.7 of [Eri24]. The basic idea is that,
while T (dn2 e) is a strange expression, we have an excellent understanding of O(dn2 e): it is just
O(n). So, if we can shift the burden of dealing with floors and ceilings from the T (nb ) component
of recurrence relations to the f(n) component, we are in good shape. We assumed that T and f
are monotone, so the following sleight of hand suffices to perform this shifting, starting from (10):

T (n) ≤ 3T
(n

2
+ 1
)

+O (n)

=⇒ T (n+ 2) ≤ 3T
(n

2
+ 2
)

+O (n+ 2)

=⇒ T ′ (n) ≤ 3T ′
(n

2

)
+O (n+ 2) = 2T ′

(n
2

)
+O (n) , where T ′ (n) := T (n+ 2) .

In the first line we used monotonicity of T and dn2 e ≤
n
2 + 1, and in the second line we substituted

n← n+ 2 into the first line. The last line defined a new function T ′ which gets rid of all rounding
errors in T expressions, and simplifies O(n + 2) into O(n). Solving this last recurrence as before
using Theorem 1, we obtain T ′(n) = O(nlog2(3)), so T (n) = T ′(n− 2) = O(nlog2(3)) as well.

Akra-Bazzi recurrences. Much heavier hammers than Theorem 1 exist: one example is the
“Akra-Bazzi method,” which generalizes (6) to handle different-sized subproblems. In my experi-
ence as an algorithms researcher, I have only ever used this tool a couple of times; it is good to
mention that it exists, however. The precise statement is not very instructive for the purpose of
this course (you will not need it to solve any problem), but a statement is in Section 4.7, [CLRS22].

4 Orders of magnitude
We take a brief digression to ruminate on runtimes and asymptotics. This discussion will guide
our later development, when we reflect on and interpret the examples in Sections 5 and 6.

Typically, in theoretical computer science, there are four types of runtimes we target: exponential,
polynomial, (nearly)-linear, and sublinear. An exponential runtime for inputs of size n has the
form O(cn) for some constant c > 1, e.g., O(2n). These types of runtimes are typical of “brute-
force” algorithms, and occur in the context of this course when we just want a proof-of-concept
that a problem is solvable using a computer in finite time. However, they are wholly unwieldy in
practice even for moderate n; if n ≈ 250, 2n is already comparable to the number of particles in
the universe. We discuss exponential-time algorithms in greater depth in Part VIII of the notes.

At the other extreme, sublinear algorithms target a computational budget of o(n); they cannot even
read or store the whole input. In order for a sublinear algorithm to apply, we typically need extra
assumptions, as otherwise an adversary can hide important information somewhere that we did
not read. A common example is assuming that the input has some sort of concise representation,
e.g., sparsity, so we can still learn about it with few samples. We only briefly touch on techniques
for designing sublinear algorithms in this course, primarily in Part VII of the notes.

In most of this course, unless specified otherwise, you are expected to design polynomial-time
algorithms, i.e., algorithms which run in time at most O(nc) for c ≥ 1. Of course, the exponent
matters! The guiding principle behind asymptotics is that a runtime like O(n log2(n)) is considered
“worse” than O(n log(n)) or O(n), but better than a larger polynomial such as O(n2) (see Lemma
11, Part I). The natural conclusion of this line of thought is that, if we restrict ourselves to
algorithms which read the entire input, the gold standard is nearly-linear runtimes of the form
O(n logk(n)) for k ≥ 0, which beat out any larger polynomial O(nc) for c > 1.
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However, one must be careful with the scope of this logic: asymptotic inequalities such as Lemma
11, Part I only hold in the limit n → ∞. Without thinking too much about the details, it
seems like one should clearly prefer an O(n log3(n)) time algorithm to an O(n1.5) time algorithm.
Counterintuitively, even if the O(·) hide the same constant, log3(n) >

√
n unless n� 107, so you

should actually prefer the latter algorithm unless your input sizes are in the tens of millions!3

An even more nefarious issue is what constants the O(·) notation is hiding. There are famous
examples of recursive algorithms where the “base case” is to solve the problem on an enormous, but
constant-sized input; we discuss one such instance in Section 5.1. As a result, the constants in these
settings can easily climb to � 2250, which is the threshold we used to establish that exponential-
time algorithms are infeasible. There is a Wikipedia page dedicated to such phenomena [Wik24];
it calls algorithms whose runtimes hide these enormous constants “galactic,” as galaxy-sized inputs
are the only scale at which it makes sense to run the algorithm over alternatives.

Our goal in this course is to equip you with knowledge to develop computational solutions to real-
world problems. Consequently, we aim to be very up front when asymptotics are hiding things such
as large constants you should be aware about. We will also care about things like when logarithmic
factors in runtimes can be improved, as this can quickly make a big difference for small n.

5 Matrices
In this section, we cover several algorithms for matrix multiplication (see Section 5.1, Part I for
relevant definitions and notation used in this section). Matrix multiplication is one of the most
fundamental problems in algorithm design, and we will see applications of matrix multiplication
methods all over the course. For example, in Section 5.2 we show how to use a fast structured
matrix multiplication algorithm to improve our integer multiplication algorithms in Section 2.

In matrix multiplication, the input is two matrices: A ∈ Rn×d, and B ∈ Rd×k, for dimensions
n, d, k ∈ N. We assume that all entries of A and B fit in one word of memory (see Section 7, Part
I); usually this just means they are bounded by poly(n, d, k) in size. The goal is to compute the
matrix product AB ∈ Rn×k, defined as:

[AB]ij = A>i:B:j =
∑
`∈[d]

Ai`Bj`, for all i ∈ [n], j ∈ [k]. (11)

In other words, the (i, j)th element of AB is just the inner product between the ith row of A and
the jth column of B, viewed as vectors. How expensive is this computation?

The starting point is the case when A = a> ∈ R1×d and B = b ∈ Rd×1 are themselves vectors
(one-dimensional matrices), so n = k = 1, and the goal is to compute a>b = 〈a,b〉 =

∑
i∈[d] aibi.

Under pretty much any reasonable model of representing a,b, e.g., as Array instances, we can
compute this inner product in O(d) time using additions and multiplications.

Generalizing this argument, if A ∈ Rn×d and B ∈ Rd×k are represented as two-dimensional arrays,
i.e., with each row stored as an Array inside a larger Array, we can compute their matrix product
(11) using nk different inner products. Therefore, the overall cost of matrix multiplication using
this straightforward method is O(ndk). Unfortunately, this is not a linear runtime: the input size
is actually only O(nd + dk), since this is the number of entries in A and B. For example, when
n = d = k (i.e., both matrices are square), straightforward matrix multiplication takes time O(n3)
and the input size is O(n2). We give algorithms which partially close this gap in Section 5.1.

Similarly, the cost of straightforward matrix-vector multiplication (between A ∈ Rn×d and v ∈
Rd×1) is O(nd), since it reduces to n different inner products. This actually is a linear time
algorithm for dense inputs, because A takes O(nd) numbers to represent. However, if the matrix
A is more structured, it can take much less than O(nd) time to describe. We give an improved
matrix-vector multiplication algorithm for a specific A, the discrete Fourier transform (DFT),
in Section 5.2. Matrix-vector products with the DFT matrix are instrumental in many signal
processing applications; we show how faster DFT products speed up scalar multiplication, as well.

Finally, in Section 5.3, we use matrices to speed up recurrences, e.g., Fibonacci numbers. A careful
analysis of our algorithm reveals subtleties in analyzing runtimes with exponentially large entries.

3Thanks to Yin Tat Lee for this motivating example.
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5.1 Strassen’s algorithm
In this section, we consider the simplest case of matrix multiplication, when the inputs A,B ∈
Rn×n are square, and we want to compute their product AB ∈ Rn×n. As discussed earlier, the
straightforward method for computing AB takes O(n3) time. Can we do better in general?

In 1969, Volker Strassen discovered a faster matrix multiplication algorithm [Str69], very similar in
spirit to Karatsuba’s algorithm (Section 2). To motivate Strassen’s algorithm, let us first consider a
naïve application of recursion to matrix multiplication. For simplicity, assume n is even (handling
rounding errors as discussed in Section 3). Then, we partition A and B, defining:

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
,

for A11, A12, A21, A22, A11, A12, A21, A22 ∈ R
n
2×

n
2 .

(12)

Because the inner product of n-dimensional vectors is really just the sum of two n
2 -dimensional

inner products, we can verify that the following recursion holds, for the partitions in (12):

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
. (13)

By observation, the recursion (13) reduces the problem of multiplying n × n matrices to eight
n
2 ×

n
2 matrix multiplications, and four matrix additions. Adding O(n) × O(n) matrices has the

same complexity as adding O(n2)-sized vectors, so all additions take time O(n2). In conclusion,
letting T (n) denote the time it takes to multiply two n× n matrices, the recursion (13) shows

T (n) ≤ 8T
(n

2

)
+O(n2).

We apply Theorem 1, noting that this is a leaves-heavy recurrence, giving T (n) = O(nlog2(8)) =
O(n3). So, this recursive viewpoint did not save us any computation over the straightforward
algorithm. This should be unsurprising; the recursion is essentially evaluating the same sums (11)
as before, but just split up across different subproblems. This situation is reminiscent of how the
straightforward recursion for scalar multiplication does not yield speedups in Section 2.

Strassen’s main observation was that we can write a recursive formula for AB as in (12), but which
uses merely seven n

2 ×
n
2 multiplications, and a constant number of additions. Let us note that

this already yields an improved runtime. Indeed, the resulting recurrence relationship is

T (n) ≤ 7T
(n

2

)
+O(n2),

and Theorem 1 shows that this solves to T (n) = O(nlog2(7)) ≈ O(n2.807).

Strassen’s actual recursive formula is very complicated, so for brevity, we do not reproduce it here:
a full description is in Section 4.2 of [CLRS22]. It involves adding n

2 ×
n
2 matrices ten times,

multiplying them seven times, and then finally adding them twelve more times. We do not claim
to have much intuition on how Strassen came up with this formula.

A long line of work has built upon Strassen’s algorithm to give faster matrix multiplication algo-
rithms: the current world record as of the writing these notes is T (n) = O(n2.3716) (peer-reviewed)
[WXXZ24] and T (n) = O(n2.3714) (in a recent preprint) [ADW+24]. These algorithms are com-
monly cited as examples of “galactic algorithms” (see Section 4), and are quite sophisticated. They
are based on bounding the complexity of an even more complicated algebraic problem (the “border
rank of the Coppersmith-Winograd tensor”) containing matrix multiplication as a subproblem.
These methods, as currently developed, are not very practical. There is also evidence that all
known techniques for matrix multiplication cannot obtain runtimes beyond ≈ n2.168 [Alm19].

However, there are also no known lower bounds other than the Ω(n2) time needed to write down the
n×n output, even if computing it was free. Characterizing the complexity of matrix multiplication
is one of the most interesting and potentially impactful open problems in algorithm design today.
As we will see in the following Section 5.2, improvements for fundamental problems can often come
from unexpected places: when trying to design faster algorithms, you can try anything!
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5.2 Fast Fourier transform
In this section, we explain the fast Fourier transform (FFT).4 The FFT is simply a fast algorithm
for solving the discrete Fourier transform (DFT) problem, which asks to multiply a given complex
vector v ∈ Cn by a certain recursively-defined “DFT matrix” Fn ∈ Cn×n. We denote this problem
by DFTn(v): in other words, DFTn is an algorithm which on input v ∈ Cn, returns the matrix-
vector product Fnv. For simplicity, we only explain the case when n is a power of 2.

Why is DFTn interesting? The problem involves multiplication by an n × n matrix with O(n2)
numbers in its representation, so it is natural to conjecture O(n2) is the fastest possible runtime.
Indeed, the straightforward matrix-vector multiplication algorithm which writes down Fn achieves
this runtime. However, it turns out that we can use the fast Fourier transform to solve this problem
in time O(n log(n)). That is, we can essentially directly write down the output (with a logarithmic
factor overhead in the runtime) without actually bothering to write down the whole matrix Fn.

This fact alone has a number of very exciting implications. For now, let us begin by defining the
problem and explaining its efficient solution. Let ι :=

√
−1 denote the imaginary unit, and let n

be a power of two. Further, let ωn := exp( 2πι
n ) = cos( 2π

n ) + ι sin( 2π
n ) denote the nth root of unity.

Recall that ωnn = 1 = cos(0) + ι sin(0), and that ωn can intuitively be seen as a rotation of angle
2π
n from 1 along the unit circle in C. In fact, the powers {ωjn}n−1

j=0 are the various nth roots of 1.

The DFT matrix Fn has (i, j)th entry ω(i−1)(j−1)
n , for all (i, j) ∈ [n]× [n]. We give some examples,

remembering that ωnn = 1 for all n, so we simplify exponents accordingly:

F2 =

(
1 1
1 −1

)
, F4 =


1 1 1 1
1 ι −1 −ι
1 −1 1 −1
1 −ι −1 ι

 , F8 =



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


,

where we let ω := ω8 for readability in the last example. The DFT matrix might be a lot to take
in at first, but if you stare at F8, all sorts of patterns start to appear. Take every odd column of
F8, i.e., every other starting from the first. Somewhat magically, we get two copies of F4:

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2


=

(
F4

F4

)
. (14)

Similarly, taking every even column, i.e., every other starting from the second, gives:

1 1 1 1
ω ω3 ω5 ω7

ω2 ω6 ω2 ω6

ω3 ω ω7 ω5

ω4 ω4 ω4 ω4

ω5 ω7 ω ω3

ω6 ω2 ω6 ω2

ω7 ω5 ω3 ω


=



1 0 0 0 0 0 0 0
0 ω 0 0 0 0 0 0
0 0 ω2 0 0 0 0 0
0 0 0 ω3 0 0 0 0
0 0 0 0 ω4 0 0 0
0 0 0 0 0 ω5 0 0
0 0 0 0 0 0 ω6 0
0 0 0 0 0 0 0 ω7





1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2


= diag

({
ωi
}7

i=0

)(F4

F4

)
.

(15)

Here we noticed that left-multiplication by a diagonal matrix is the same as multiplying each row
by the diagonal elements, so the even columns are just a “twist” of the odd columns. This pattern

4We follow the excellent presentation of [O’D20]. This whole lecture series is great.
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straightforwardly generalizes to any n a power of two: Fn’s odd and even columns are(
Fn

2

Fn
2

)
, diag

({
ωin
}n−1

i=0

)(Fn
2

Fn
2

)
. (16)

Next, consider the following interpretation of Av, for A ∈ Cn×n and v ∈ Cn. The matrix-vector
product is a linear combination of {A:j}j∈[n], the columns of A, with coefficients given by v:

Av = v1A:1 + v2A:2 + . . .+ vnA:n.

Hence, a matrix-vector multiplication of v with A is just a multiplication of v’s odd entries with
A’s odd columns, summed with a multiplication of v’s even entries with A’s even columns.

Finally, let us return to the problem of implementing DFT. For an input v ∈ Cn, let vodd ∈ C
n
2

and veven ∈ C
n
2 be the odd and even coordinates of v, concatenated in order. We have shown from

(16), our characterizations of the odd and even columns of Fn, that the following recurrence holds:

Fnv =

(
Fn

2

Fn
2

)
vodd︸ ︷︷ ︸

:=sodd

+diag
({
ωin
}n−1

i=0

)(Fn
2

Fn
2

)
veven︸ ︷︷ ︸

:=seven

. (17)

In other words, we can compute Fnv = DFTn(v) in the following recursive way. To make the
pseudocode cleaner, we let n be formally passed in as an argument to the algorithm.

Algorithm 3: DFT(n,v)

1 Input: n ∈ N a power of two, v ∈ Cn

2 if n == 1 then
3 return v
4 end
5 vodd,veven ← vectors in C

n
2 concatenating the odd and even coordinates of v in order,

respectively
6 aodd,aeven ← DFT(n2 ,vodd),DFT(n2 ,veven)

7 sodd, seven ←
(
aodd
aodd

)
,

(
aeven
aeven

)
8 s̃even ← vector in Cn with [̃seven]j+1 = [seven]j+1 · ωjn for all 0 ≤ j ≤ n− 1
9 return sodd + s̃even

It is straightforward to check that all steps of Algorithm 3 other than Line 6 take O(n) arithmetic
operations. Moreover, Line 6 requires two calls to DFTn

2
. Therefore, letting T (n) denote the

number of operations required by DFTn, our implementation satisfies the recurrence relation:

T (n) ≤ 2T
(n

2

)
+O(n). (18)

The recurrence relation (18) is one of the most famous in theoretical computer science, and will
show up several other times in this course. For now, we can apply Theorem 1 to conclude we are in
the balanced case, and the recurrence solves to T (n) = O(n log(n)), the claimed runtime of DFTn.

So why is it important that we can solve DFTn quickly? To explain this, we need to first explain
two properties of the DFT matrix Fn: that it is a unitary matrix, as well as a Vandermonde matrix.

The DFT matrix is unitary. A complex matrix U ∈ Cn×n is called unitary if its columns
form an orthonormal basis of Cn. For our purposes, this just means U’s inverse U−1 has a simple
expression: U−1 = U†, where † first transposes the matrix, and then takes the elementwise complex
conjugate. We give an interpretation of this in the real setting as the columns {U:i}i∈[n] acting
like orthogonal unit vectors in Section 5.2, Part I, i.e., 〈U:i,U:j〉 = 1 iff i = j, and = 0 otherwise.5

5For reasons involving the identity (a + bι)(a+ bι) = a2 + b2, we recall that we have to conjugate one vector
when computing inner products in Cn. So when we write 〈u,v〉 for u,v ∈ Cn, we really mean

∑
i∈[n] uivi.
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The punchline is that 1√
n
Fn is unitary. This means the following equation holds:

(
1√
n
Fn

)†(
1√
n
Fn

)
=

1

n
F†nFn = In =⇒ F−1

n =
1

n
F†n. (19)

It is a nice geometric exercise to visualize why this is true. The proof follows from the equation

1

n

n−1∑
k=0

ωikωjk =
1

n

n−1∑
k=0

ω(i−j)k =

{
1 i = j

0 i 6= j
for any 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1. (20)

Notice that the left-hand side above is the inner product of the ith and jth columns of 1√
n
Fn,

where we abbreviated ω := ωn, and recalled ω = ω−1. Intuitively, if i = j, then the expression
(20) averages n copies of 1, and if not, it averages n evenly spaced points around the unit circle.

Now, observe that because Fn is symmetric, F†n is just the elementwise conjugate of Fn, and its
rows are a permutation of Fn’s rows. In fact, the rows of F†n are just the rows of Fn in reverse
order, except for the all-ones row. To see this, it is easiest to use F8 as an example:

F8 =



1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω


, F†8 =



1 1 1 1 1 1 1 1
1 ω7 ω6 ω5 ω4 ω3 ω2 ω
1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω4 1 ω4 1 ω4 1 ω4

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω ω2 ω3 ω4 ω5 ω6 ω7


.

Therefore, multiplication with F†n takes the same asymptotic time as multiplication with Fn, i.e.,
O(n log(n)) via DFTn, because to evaluate F†nv we can just permute the entries of Fnv.

Let DFTInvn denote an algorithm which on input v ∈ Cn returns the matrix-vector product F−1
n v.

By using the identity (19) and the special structure of F†n, we have shown that we can implement
DFTInvn in O(n log(n)) time. We provide pseudocode below in Algorithm 4.

Algorithm 4: DFTInv(n,v)

1 Input: n ∈ N a power of two, v ∈ Cn

2 u← DFT(n,v)
3 ũ← vector in Cn with ũ1 = u1 and ũj = un+2−j for all 2 ≤ j ≤ n
4 return 1

n ũ

The DFT matrix is Vandermonde. The other important property of Fn is that it can be
viewed as the evaluation of degree-n polynomials. Specifically, let {ai}n−1

i=0 be the coefficients of a
degree-n polynomial pa, where a ∈ Cn concatenates the coefficients as ai = ai−1 for all i ∈ [n]:

pa(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ an−1x
n−1 =

n−1∑
i=0

aix
i. (21)

Notice that for all 0 ≤ j ≤ n− 1, the (j + 1)th element of Fna is an evaluation of pa at x = ωj :

[Fn]
>
(j+1): a =

n−1∑
i=0

ai
(
ωj
)i

= pa
(
ωj
)
.

Therefore, the elements of Fna just correspond to different polynomial evaluations. Succinctly,

Fna =
{
pa
(
ωj
)}n−1

j=0
. (22)

Matrices for which this expression is true, for some set of evaluation points, are called Vandermonde.
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Just as applying Fn to a coefficient vector a evaluates the corresponding polynomial pa at the
points {ωj}n−1

j=0 , we can take values v = {pa(ωj)}n−1
j=0 and recover the coefficients a using F−1

n :

F−1
n v = a, where pa

(
ωj
)

= vj+1 for all 0 ≤ j ≤ n− 1. (23)

This is a basic example of polynomial interpolation, where we reconstruct the coefficients of a
polynomial, given its values at a fixed set of points. Just as two points determine a unique line,
three points determine a unique quadratic, etc., the n evaluations of a degree-(n− 1) polynomial
at {ωj}n−1

j=0 uniquely determine the polynomial, whose coefficients are recoverable via (23).

Faster integer multiplication. The reason why this is exciting is because integer multiplication
in the sense of Section 2 is just polynomial multiplication. We can represent two m-digit numbers
a = {ai}m−1

i=0 and b = {bi}m−1
i=0 in base 10 as polynomial evaluations at x = 10:

a =

m−1∑
i=0

ai10i, b =

m−1∑
i=0

bi10i.

So, if we equate polynomials pa ≡ a and pb ≡ b in the canonical way, we can compute ab via

ab =

(
m−1∑
i=0

ai10i

)(
m−1∑
i=0

bi10i

)
= pa(10)pb(10) = (papb) (10).

Here, papb is the degree-2(m− 1) polynomial which satisfies (papb)(x) = pa(x)pb(x) for all x ∈ C.
We can directly compute the coefficients of papb in O(m2) time, using an expansion similar to (1).
However, we can actually compute them in only O(m log(m)) time, via the fast Fourier transform.
Notice that if we had the coefficients of papb, we could just directly evaluate (papb)(10) to obtain
the product in O(m) time, so computing coefficients in O(m log(m)) time is the bottleneck step.

To see how to do this, let n be a power of two with 2m ≤ n < 4m. This way, the product ab has at
most n digits. By appropriately padding with zeroes, a and b can be viewed as coefficient vectors
a,b ∈ Cn for degree-(m− 1) polynomials, so a = pa(10), b = pb(10), and we wish to compute ab.

We can evaluate the coefficients of the polynomial papb in O(m log(m)) time as follows.

1. Recalling the expression (22), we can compute all of the values Fna = {pa(ωj)}n−1
j=0 and

Fnb = {pb(ωj)}n−1
j=0 in time O(n log(n)), using DFTn twice.

2. By taking the products of these lists, this gives {(papb)(ωj)}n−1
j=0 in O(n) additional time.

3. Since papb is a degree-(n− 1) polynomial (padding with zeroes as necessary), and we have n
evaluations of it, (23) recovers its coefficients c ∈ Cn, in time O(n log(n)) using DFTInvn.

Now, given the coefficients c, we can evaluate pc(10) = pa(10)pb(10) in time O(n). The dominant
steps are the applications of DFTn to evaluate polynomials, and DFTInvn to recover the coefficients
of the product polynomial, given n evaluations. The overall runtime is O(n log(n)) = O(m log(m)),
as claimed. This is a faster runtime for integer multiplication compared to Section 2.

We swept an important detail under the rug: justifying that adding and multiplying two numbers
in C can be done in O(1) time. Even in the word RAM model, we can only hope to do this to finite
precision (i.e., a few bits). Fortunately, we can adapt the ideas above to integer arithmetic, by
treating ωn as an integer “nth root of unity” satisfying ωnn ≡ 1 in appropriate modular arithmetic.
This strategy was formalized by Schönhage and Strassen [SS71], who gave an integer multiplication
algorithm using O(n log(n) log log(n)) bit operations; this was improved to O(n log(n)) by recent
work of [HvdH21], but the latter algorithm has a much larger leading constant.

In practice, the fast Fourier transform is used for all sorts of applications in signal processing,
optics, compression, and more. Regarding integer multiplication specifically, Python uses a mix
of the grade-school algorithm (1) and Karatsuba’s algorithm, depending on the size of the input.
However, this is likely because most common uses of multiplication are on relatively small integers.
The Schönhage-Strassen FFT has highly-optimized implementations in free GNU libraries (GMP),
for instance, and is preferred in practice for large integers. For applications in cryptography which
repeatedly multiply large numbers, FFT-based multiplication algorithms are your best bet.
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5.3 Fibonacci numbers
We give another application of matrix multiplication, to solving recurrence relations. Consider
Fib(n), the problem of outputting the nth Fibonacci number Fn, which satisfies the recurrence

F0 = 1, F1 = 2, Fn = Fn−1 + Fn−2, for all n ≥ 2. (24)

The straightforward way of implementing Fib(n) requires n integer additions: we can always keep
variables storing the values Fi−2 and Fi−1, and add these to obtain Fi, in a for loop over 2 ≤ i ≤ n.6

We can obtain signifacnt speedups using matrix multiplication. Observe that for x, y ∈ R,(
1 1
1 0

)(
x
y

)
=

(
x+ y
x

)
=⇒

(
1 1
1 0

)(
Fn−1

Fn−2

)
=

(
Fn
Fn−1

)
, for all n ≥ 2. (25)

Therefore, it inductively holds that for all n ≥ 1,

An

(
1
0

)
=

(
Fn
Fn−1

)
, for A :=

(
1 1
1 0

)
, (26)

since we can verify the base case n = 1 via (24), and the inductive step follows using (25). So, if
we want to compute Fn, it is enough to compute An and take its top-left element.

We now give a useful trick for computing An using only O(log(n)) multiplications of 2×2 matrices.
Let p = 2k be the largest power of two which is ≤ n, i.e., p ≤ n < 2p. We can compute

A, A2, A4, . . . , A2k−1

, A2k

, (27)

using only O(k) = O(log(n)) matrix multiplications, since each A2i

is just the square of A2i−1

.
Next, we can write An as a product of at most O(log(n)) of the matrices in (27), by considering the
binary representation of n. For example, if n = 23, A23 = A16 ·A4 ·A2 ·A1 = A24 ·A22 ·A21 ·A20

.

We have shown that Fn is computable using O(log(n)) matrix multiplications, and each multipli-
cation only involves O(1) integer operations (addition and multiplication), because the matrices
involved are 2 × 2 (they are all powers of A ∈ R2×2). Hence, it seems that we have obtained an
exponential improvement over the straightforward algorithm, which used O(n) integer additions.
Indeed, implementing (26) via repeated squaring needs just O(log(n)) arithmetic operations.

Unfortunately, the devil is in the details: while (26) does imply a faster implementation of Fib(n)
than the straightforward method, it is actually only a polynomial improvement once we account
for the size of the integers we need to manipulate. In particular, recall from Lemma 14, Part I,
that Fn grows exponentially in n. Therefore, we require Θ(n) digits to represent the integer Fn.
It is thus unreasonable to expect that we can add e.g., Fn−1 and Fn−2 in O(log(n)) time.

With this caveat in mind, let us re-examine the complexity of both the straightforward implemen-
tation of Fib(n), and the implementation via (26) and repeated squaring. Specifically, we bound
the number of bit operations used by both methods. The straightforward method requires O(n2)
bit operations, as it uses O(n) integer additions, and each integer is expressible using O(n) bits.

On the other hand, the bottleneck operation for the implementation via (26) is the computation
of all the powers (27). Indeed, all further matrix multiplications are no more expensive (up to
constant factors) than evaluating the largest matrix power A2k

= A2k−1 ·A2k−1

. Let T (2i) denote
the cost of computing the matrix power A2i

, in bit operations. We have the recurrence

T (2i) = T (2i−1) +O(2i log(2i)), (28)

since we need to computeA2i−1

, and then multiply or add O(2i)-digit integers a few times to square
A2i−1

. As discussed in Section 5.2, this arithmetic costs O(2i log(2i)) bit operations [HvdH21].

Reparameterizing the recurrence (28) as T (n) = T (n2 )+O(n log(n)), Theorem 1 shows that T (n) =
O(n log(n)), which is also the asymptotic cost of the overall method. Thus, while not as dramatic
as we originally hoped, the matrix multiplication-based approach to implementing Fib(n) still
represents a nearly-quadratic improvement over the straightforward approach.

6There is actually an even more basic way to implement Fib(n), which directly calls Fib(n − 1) and Fib(n − 2)
as subroutines. However, this leads to an exponential blowup in the number of recursive calls to Fib, because e.g.,
Fib(n− 1) leads to another call to Fib(n− 2), and both call Fib(n− 3), etc. The implementation we describe makes
sure that as soon as we figure out Fib(i) for i ≤ n, we never compute it again: it is a “bottom-up” recursion rather
than a “top-down” one. This is our first example of dynamic programming, which we revisit in Part III of the notes.
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6 More examples
We conclude with a few more examples of using recursion to solve basic problems in creative ways.

6.1 Inversions
Let L be a list of n objects from an ordered universe Ω. Consider the problem of computing the
number of inversions in L, given as an input Array (see Section 7.1, Part I). Namely, letting L[i]
be shorthand for L.Query(i) (the ith entry in L), we wish to find the number of ordered pairs of
indices (i, j) ∈ [n] × [n], with L[i] > L[j] but i < j. We denote this problem by Inversions(L).
Inversions(L) is a natural metric on how far a list is from being sorted. This metric is known as the
Kendall tau distance to a sorted list, and is often used in practice to compare rankings. Indeed,
if L is completely sorted in nondecreasing order, Inversions(L) = 0. Conversely, Inversions(L) is
maximized (taking value

(
n
2

)
) when L is sorted in decreasing order and all objects are distinct.

There is a brute-force algorithm that simply checks whether each pair i < j is an inversion, and
requires O(n2) time. How can we use recursion to speed up this algorithm? A natural starting
point is recursively splitting L into two contiguous lists L1 and L2 of roughly half the size, and
computing c1 = Inversions(L1) and c2 = Inversions(L2). This counts all inversions (i, j) where both
i and j are in L1 or L2. It remains to compute c3, the number of pairs i < j where L[i] is in L1

but L[j] > L[i] is in L2. In other words, for each L[i] in L1, we want to know how many entries
are smaller in L2. A priori, this seems to take O(n) time per L[i], or O(n2) total time again.

The key observation is that this would be very simple if L2 was already sorted. For example, we
could binary search over L2 in O(log(n)) time, to determine where to place L[i]. This also tells us
L[i]’s contribution to c3. Let T (n) denote the time it takes to solve Inversions on size-n lists, and
S(n) denote the time it takes to sort a size-n list. Then, we have shown the recursion

T (n) = 2T
(n

2

)
+ S

(n
2

)
+O

(n
2

log
(n

2

))
= 2T

(n
2

)
+O(n log(n)). (29)

The first equality in (29) follows from calling Inversions twice, sorting L2, and binary searching to
insert each of the entries from L1 into the newly sorted L2. We used the well-known fact that
S(n) = O(n log(n)) in the second equality. For example, Algorithm 5 implements a standard
sorting algorithm, MergeSort, whose runtime S(n) satisfies the recurrence (18), and thus evaluates
to S(n) = O(n log(n)). Applying Theorem 1 to (29) then yields T (n) = O(n log2(n)).

Algorithm 5: MergeSort(L)

1 Input: L, an Array instance containing n := |L| objects from the ordered universe Ω
2 if n == 1 then
3 return L
4 end
5 L1, L2 ← Array instances containing the first dn2 e and last bn2 c entries of L, respectively
6 L1, L2 ← MergeSort(L1),MergeSort(L2)
7 i1 ← 1, i2 ← 1
8 for i ∈ [n] do
9 if L1[i1] ≤ L2[i2] then

10 L.Insert(i, L1[i1])
11 i1 ← i1 + 1

12 end
13 else
14 L.Insert(i, L2[i2])
15 i2 ← i2 + 1

16 end
17 end
18 return L

In fact, we can do better. Let us re-examine the loop in Lines 8 to 17. As our inductive hypothesis
(the “recursion fairy”), we can assume that L1 and L2 are sorted. Now, consider an entry L1[i?]. It
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is inserted into L through the interleaved merging process in Lines 8 to 17. Concretely, it is inserted
when all smaller entries in L1 have been inserted (so the i1 counter has sequentially reached i?),
and further, L2[i2 − 1] < L1[i?] ≤ L2[i2] for the current value of i2.

Revisiting our recursive Inversions solution, we can now answer: what are all the objects in L2 that
are smaller than L1[i?]? They are exactly the objects inserted into our list L by MergeSort, at
the time when i1 = i?. Moreover, we know exactly how many such objects there are: i2 − 1, i.e.,
all the entries of L2 that have already been merged. Hence, we can directly piggyback off of our
implementation of MergeSort to implement Inversions! We provide pseudocode in Algorithm 6.

Algorithm 6: Inversions(L)

1 Input: L, an Array instance containing n := |L| objects from the ordered universe Ω
2 if n == 1 then
3 return (L, 0)
4 end
5 L1, L2 ← Array instances containing the first dn2 e and last bn2 c entries of L, respectively
6 (L1, c1), (L2, c2)← Inversions(L1), Inversions(L2)
7 i1 ← 1, i2 ← 1, c3 ← 0
8 for i ∈ [n] do
9 if L1[i1] ≤ L2[i2] then

10 L.Insert(i, L1[i1])
11 c3 ← c3 + (i2 − 1)
12 i1 ← i1 + 1

13 end
14 else
15 L.Insert(i, L2[i2])
16 i2 ← i2 + 1

17 end
18 end
19 return (L, c1 + c2 + c3)

Algorithm 6 is identical to Algorithm 5, outside of Line 11, which takes O(1) time per loop (O(n)
in total), and returning an inversion count in addition to a sorted list. Thus, the runtime of
Algorithm 6 satisfies (18), so it takes O(n log(n)) time, improving our earlier solution.

The key lesson is: when designing a recursive algorithm, you can enforce any helpful invariant you
need from the subproblems, as long as you can efficiently preserve the invariant recursively. For
example, in Algorithm 6, we took extra effort to make sure our subproblems sorted their input
lists, rather than just returning inversion counts. This effort paid off in the combining step (i.e.,
Lines 8 to 18, outside of the recursive calls), since it dramatically simplified computation of c3.
Finally, leveraging our MergeSort know-how, we showed that we can both perform the combining
step and recursively maintain our sorted list invariant in O(n) time.

6.2 Selection
Again, let L be a list of n objects from an ordered universe Ω. One of the most basic queries over
L one can implement is selection. Specifically, let Selection(L, i) denote the problem of returning
the ith largest object in L. Clearly, we can implement Selection(L, i) by first sorting L (i.e., using
MergeSort), and then returning the ith entry of the sorted list. This requires O(n log(n)) time.

However, for small values of n we can do significantly better. For example, if i =
√
n, here is a

faster algorithm. We can first insert all of the objects in L into a Heap data structure (Section
7.2, Part I), which takes O(n) time. We can then call ExtractMin() for i =

√
n times, which takes

O(
√
n log(n)) time and does not dominate. More generally, if i = O( n

log(n) ), this implementation
of Selection runs in O(n) time. Can we do better in general, e.g., if i = Θ(n)?

A basic motivation for Selection is QuickSort, a randomized algorithm which first selects a pivot
entry L[j], and then buckets the remaining entries into two categories: those that are at most
L[j], and those that are larger. It then recursively sorts the two halves, using O(n) runtime
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per recursion level. If the pivot’s rank, i.e., the value k such that L[j] is the kth largest entry
in L, satisfies n

3 ≤ k ≤ 2n
3 for instance, then the recursion tree for QuickSort terminates after

O(log(n)) levels, because each level decreases node sizes by a constant factor. This would lead to
an overall runtime of O(n log(n)) for QuickSort. Unfortunately, the simplest implementation of
pivot selection, that chooses a random entry, can potentially repeatedly choose poor-quality pivots
and require O(n2) time. If we can implement a median finder, Selection(L, dn2 e), in O(n) time, we
can use it to select pivots, and obtain a deterministic QuickSort variant in O(n log(n)) time.

It turns out that we can implement Selection(L, i) in O(n) time for any i ∈ [n]. In this section, we
explain such a linear-time selection algorithm, following the presentation of [Eri24]. Algorithm 7
gives a simple skeleton implementation of Selection, assuming access to the following subroutines.

• FindPivot(L): on input L, a list of objects from Ω, returns an object x ∈ L.

• Pivot(L, x): on input L, a list of objects from Ω, and x ∈ L, returns (L′, k). L′ is a permu-
tation of L satisfying: L′[k] = x, L′[i] ≤ x for all i < k, and L′[i] > x for all i ≥ k.

Note that there is a simple implementation of Pivot(L, x) in O(n) time, which iteratively passes
through the list to compute the rank k of x, inserts x in the kth entry of the output, and then
finally performs another iterative pass to bucket the remaining entries. We postpone Algorithm 8,
our implementation of FindPivot, for now (as you may guess, it is recursive). In Lines 11 and 14 of
the following Algorithm 7, we use L[a : b] to denote the sublist formed by all L[i] with a ≤ i ≤ b.

Algorithm 7: Selection(L, i)

1 Input: L, an Array instance containing n := |L| objects from the ordered universe Ω, i ∈ [n]
2 if n == 1 then
3 return L[1]

4 end
5 x← FindPivot(L)
6 (k, L)← Pivot(L, x)
7 if k == i then
8 return L[k]

9 end
10 else if i < k then
11 return Selection(L[1 : k − 1], i)

12 end
13 else
14 return Selection(L[k + 1 : n], i− k)

15 end

It is straightforward to verify correctness of Selection. If the pivot x we find on Line 5 is the ith
largest object, we return it. Otherwise, there are two cases. If the desired output object is to the
left of x = L[k] after Line 6 has executed, i.e., i < k, we recursively select the ith largest object
amongst L[1 : k − 1], and this is handled by Line 11. If it is to the right of x (i.e., i > k), we
similarly must select the (i− k)th largest object amongst L[k+ 1 : n], handled by Line 14. This is
because all of the k elements we removed, L[1 : k], are all smaller than the desired output.

How fast is Algorithm 7? We already argued that Line 6 takes O(n) time, and Lines 2 to 4 and 7
to 9 clearly take O(1) time. The only other steps are one call to FindPivot on Line 5, and one
recursive call to Selection on either Line 11 or 14. If we can bound the costs of these two steps
by a low-order term, we obtain an O(n) runtime via a geometric sequence. Can we implement
FindPivot in a cheap way, that also recursively reduces sublist sizes by a constant factor?

It is natural to guess that Selection can itself be used to implement FindPivot recursively. However,
it takes quite a bit of ingenuity to do so in a way which decreases the overall cost per recursion
level. The first such successful implementation of FindPivot was themedian-of-medians (henceforth,
MoM) method of [BFP+73]. MoM is described in Algorithm 8, and uses the following subroutine.

• ShortMedian(L): on input L, a list of at most 5 objects from Ω, returns the median of L.

Because ShortMedian is only run on inputs of size at most 5, it takes O(1) time.
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Algorithm 8: MedianOfMedians(L)

1 Input: L, an Array instance containing n := |L| objects from the ordered universe Ω
2 M ← Array.Init(n)
3 for j ∈ [dn5 e] do
4 M.Insert(ShortMedian(L[5(j − 1) + 1 : min(5j, n)]), j)

5 end
6 return Selection(M, d n10e)

To briefly explain, the for loop in Lines 3 to 5 of Algorithm 8 repeatedly peels off a sublist of at
most 5 items from L, computes the median of this sublist using ShortMedian, and adds it to M .
We then return the median of M using Selection, explaining the name: median-of-medians.

The cost of Algorithm 8 is O(n) time to run Lines 3 to 5, plus a recursive call to Selection. The
magical property of MedianOfMedians is that, by using it as our FindPivot algorithm in Line 5 of
Algorithm 7, we claim that we can guarantee the recursively generated sublists on Lines 11 and 14
are bounded in size by 7n

10 , up to rounding errors. Moreover, M itself is bounded in size by n
5 ,

again up to rounding. Therefore, assuming our claim about the quality of MedianOfMedians as a
pivot is true, the runtime of Algorithm 7 on length-n lists L, denoted T (n), satisfies the recursion

T (n) ≤ T
(n

5

)
+ T

(
7n

10

)
+O(n). (30)

Here, the T (n5 ) term is due to Line 6 of Algorithm 8, the T ( 7n
10 ) term is due to either Line 11 or 14

of Algorithm 7, and the O(n) term is due to all other costs of Algorithms 7 and 8.

Because 1
5 + 7

10 = 9
10 < 1, each layer of the resulting recursion tree (e.g., a variant of the derivation

in (8)) has a total size bounded by 9
10 of the previous layer. This a geometric sequence with common

ratio < 1, so it yields a root-heavy recursion, and (30) resolves to T (n) = O(n) as claimed.

It remains to prove our claim that MedianOfMedians gives a good pivot. We will show that, up to
rounding errors, the rank of the output x is in [ 3n

10 ,
7n
10 ]. If this is the case, then both buckets in

the list pivoted around x have size at most 7n
10 . Now, observe that x is at least as large as half the

objects in M ( n10 total), as it is the median. Moreover, these n
10 objects are themselves medians of

length 5 sublists, so they are each at least as large as 2 other objects in their own sublists. This
leads to a total of n

10 +2 · n10 = 3n
10 distinct objects in L guaranteed to be at most x. Symmetrically,

x is guaranteed to be smaller than 3n
10 distinct objects, concluding the proof.

Unfortunately, the constants hidden by our analysis are somewhat unwieldy. For instance, note
that the recursion tree resulting from (30) has a geometric ratio of 9

10 , which translates to a 10×
overhead over the root cost. Further, the constant factors inMedianOfMedians are themselves large,
e.g., the runtime of ShortMedian, which we budgeted as O(1). To our knowledge, randomized or
hybrid pivot methods are more commonly preferred in practice for implementing selection.

6.3 Closest pair
We conclude with a particularly ingenious example of using recursion to solve a problem in com-
putational geometry, the closest pair problem. This section follows the presentation of [KT05].

In this problem, the input L is a list of points {pi = (xi, yi)}i∈[n] ⊂ R2. We assume for sim-
plicity that we can perform arithmetic operations on the coordinates xi, yi in O(1) time, e.g.,
that coordinates are polynomially-bounded in size and we are working with word size O(log(n)).
The goal is to output a pair (i, j) ∈ [n] × [n] with i 6= j minimizing the Euclidean distance
‖pi − pj‖2 :=

√
(xi − xj)2 + (yi − yj)2. In other words, we want to find the closest pair of points.

It is clear that we can solve the problem in O(n2) time. Indeed, we can always just compute
‖pi − pj‖2 for all of the

(
n
2

)
= O(n2) pairs of distinct points, and obtain the minimum-realizing

pair. In this section, we present a faster algorithm which takes only O(n log(n)) time.

For simiplicity, we assume L is sorted by x-coordinate, so xi ≤ xj for all i < j, and that we have
access to another list S which sorts the points by y-coordinate. Every point has pointers to its
rank in L and S. We can perform these computations in O(n log(n)) time, e.g., via MergeSort.
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Let us now explain how to compute the closest pair in O(n log(n)) time. Our goal is to show that
this problem has a runtime satisfying the standard recurrence (18). As you might suspect, as in
Section 6.1, the first step is to solve recursive closest pair subproblems on the left and right halves
of L. Specifically, let pa, pb be the closest distinct pair of points with 1 ≤ a, b ≤ dn2 e, and let ps, pt
be the closest distinct pair of points with dn2 e+ 1 ≤ s, t ≤ n. Also, let

∆ := min {‖pa − pb‖2 , ‖ps − pt‖2} (31)

be the minimum distance we have found so far, restricted to two points in the same half of L. The
only thing left is to show how to find the closest pair that crosses between halves, p` ∈ L[1 : dn2 e],
pr ∈ L[dn2 e+ 1, n], in O(n) time. This would imply the closest pair problem satisfies (18).

Wait, O(n) time? This seems very surprising: there are Θ(n2) candidates that we need to consider,
each of which pair a point from the left half and a point from the right half. Fortunately, we know
one extra fact: we are only interested in such a pair of points if they are within distance ∆ of each
other, due to our precomputation (31). This fact will be our saving grace.

Observation 1: Restricting to a strip. Consider a vertical line ` in the x-y plane, corresponding
to x = x?, where x? := xdn2 e. Because L is sorted by x coordinate, all of the points in the left half
L[1 : dn2 e] either are on ` or fall to the left of `. Similarly, all of L[dn2 e+ 1, n] falls to the right of
`. We claim this means that, if our goal is to find the closest pair, we can restrict our attention to
points pi ∈ L whose x coordinate is in the range [x?−∆, x?+∆]. If xi > x?+∆, for example, then
pi falls in the right half, and clearly has distance at least ∆ from any point left of `. This means
it cannot belong to the closest pair, since we already know ∆ is the benchmark (31). Henceforth,
let C be the set of pi ∈ L which are close to `, i.e., with xi ∈ [x? −∆, x? + ∆]. All of these points
fall in a vertical strip of width 2∆, extending a distance ∆ to both the left and right of `.

Observation 2: One point per grid box. Let us subdivide this vertical strip into a grid of
non-overlapping squares of side length ∆

2 , with four grid boxes per row. Our next observation is
that each grid box can only contain a single point from C. Indeed, each grid box falls entirely on
the left or right of `, and has diameter ∆ ·

√
2

2 < ∆. If a box contained two points, this means they
both came from the same side and had distance < ∆, contradicting the definition in (31).

Observation 3: O(1) candidates per point. Our final observation is that there are very few
grid boxes we must consider for each point p ∈ C to find the closest pair, as we are only interested
in q ∈ C at a distance of ≤ ∆ from p (to compete with the benchmark (31)). A crude analysis
shows that a neighborhood of 20 boxes, i.e., a 5 × 4 grid with p in the middle row, must contain
any such q. Moreover, we already observed that each box contains at most one point. Thus, each
p has at most 19 other candidates q ∈ C that could satisfy ‖p− q‖2 < ∆.

At this point, we are essentially done. For example, assuming access to a good hash function,
we could hash every point in C to its neighborhood of 20 grid boxes in O(1) time, and check
for collisions. We can then compute the distance of p to all of its nearby points (i.e., with a
hash collision) in O(1) time, since there are only a constant number of collisions possible. Using
the HashTable implementation in Section 7.4, Part I, this gives an O(n) expected runtime for the
combining step. This means the closest pair problem satisfies the recurrence (18) in expectation.

By using the sorted list of y coordinates we computed at the beginning of the algorithm, we
can upgrade to a deterministic O(n log(n)) time algorithm. We claim that for each p ∈ C, any
candidate q ∈ C for the closest pair must have y coordinate rank within 20 of p’s. Indeed, if any
q ∈ C satisfies ‖p− q‖2 ≤ ∆, q must lie in the 5×4 grid surrounding p. There are at most 20 other
points that could have a closer y coordinate to p, since any such closer point must also lie in the
5 × 4 grid. By our second observation earlier, there are ≤ 20 points in this grid total. Therefore,
we can check all candidate pairs in O(n) time by looping over all p ∈ C, completing the proof.

We will revisit this problem later in the course, and give a randomized algorithm running in
expected time O(n) in Part VII of the notes. More broadly, the field of computational geometry
is a great source of fundamental algorithms problems admitting clever solutions. The closest pair
problem serves as a good first introductory example to this field, as the tricks we used of fixing a
scale, and restricting our consideration recursively, are quite generic.
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Further reading
For more on Section 2, see Chapter 1.9, [Eri24] or Chapter 5.5, [KT05] or Chapter 1, [Rou22].

For more on Section 3, see Chapters 4.3 to 4.7 of [CLRS22] or Chapter 1.7, [Eri24] or Chapter 5.2,
[KT05] or Chapter 4, [Rou22].

For more on Section 5.1, see Chapter 4.2, [CLRS22] or Chapter 3.3, [Rou22].

For more on Section 5.2, see Chapter A, [Eri24] or Chapter 5.6, [KT05].

For more on Section 5.3, see Chapter 3.2, [Eri24].

For more on Section 6.1, see Chapter 5.3, [KT05] or Chapter 2, [Rou22].

For more on Section 6.2, see Chapter 9, [CLRS22] or Chapter 1.8, [Eri24] or Chapter 6, [Rou22].

For more on Section 6.3, see Chapter 5.4, [KT05] or Chapter 3.4, [Rou22].
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